Warning
This page was created from a pull request.
jax.numpy.linalg.eigvalshΒΆ
-
jax.numpy.linalg.
eigvalsh
(a, UPLO='L')[source]ΒΆ Compute the eigenvalues of a complex Hermitian or real symmetric matrix.
LAX-backend implementation of
eigvalsh()
. Original docstring below.Main difference from eigh: the eigenvectors are not computed.
- Parameters
a ((.., M, M) array_like) β A complex- or real-valued matrix whose eigenvalues are to be computed.
UPLO ({'L', 'U'}, optional) β Specifies whether the calculation is done with the lower triangular part of a (βLβ, default) or the upper triangular part (βUβ). Irrespective of this value only the real parts of the diagonal will be considered in the computation to preserve the notion of a Hermitian matrix. It therefore follows that the imaginary part of the diagonal will always be treated as zero.
- Returns
w β The eigenvalues in ascending order, each repeated according to its multiplicity.
- Return type
(.., M,) ndarray
- Raises
LinAlgError β If the eigenvalue computation does not converge.
See also
eigh()
eigenvalues and eigenvectors of real symmetric or complex Hermitian (conjugate symmetric) arrays.
eigvals()
eigenvalues of general real or complex arrays.
eig()
eigenvalues and right eigenvectors of general real or complex arrays.
scipy.linalg.eigvalsh()
Similar function in SciPy.
Notes
New in version 1.8.0.
Broadcasting rules apply, see the numpy.linalg documentation for details.
The eigenvalues are computed using LAPACK routines
_syevd
,_heevd
.Examples
>>> from numpy import linalg as LA >>> a = np.array([[1, -2j], [2j, 5]]) >>> LA.eigvalsh(a) array([ 0.17157288, 5.82842712]) # may vary
>>> # demonstrate the treatment of the imaginary part of the diagonal >>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]]) >>> a array([[5.+2.j, 9.-2.j], [0.+2.j, 2.-1.j]]) >>> # with UPLO='L' this is numerically equivalent to using LA.eigvals() >>> # with: >>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]]) >>> b array([[5.+0.j, 0.-2.j], [0.+2.j, 2.+0.j]]) >>> wa = LA.eigvalsh(a) >>> wb = LA.eigvals(b) >>> wa; wb array([1., 6.]) array([6.+0.j, 1.+0.j])