Warning
This page was created from a pull request.
jax.numpy.array_equiv¶
-
jax.numpy.
array_equiv
(a1, a2)[source]¶ Returns True if input arrays are shape consistent and all elements equal.
LAX-backend implementation of
array_equiv()
. Original docstring below.Shape consistent means they are either the same shape, or one input array can be broadcasted to create the same shape as the other one.
- Parameters
a2 (a1,) – Input arrays.
- Returns
out – True if equivalent, False otherwise.
- Return type
Examples
>>> np.array_equiv([1, 2], [1, 2]) True >>> np.array_equiv([1, 2], [1, 3]) False
Showing the shape equivalence:
>>> np.array_equiv([1, 2], [[1, 2], [1, 2]]) True >>> np.array_equiv([1, 2], [[1, 2, 1, 2], [1, 2, 1, 2]]) False
>>> np.array_equiv([1, 2], [[1, 2], [1, 3]]) False