Warning
This page was created from a pull request.
jax.numpy.bitwise_not¶
-
jax.numpy.
bitwise_not
(x)¶ Compute bit-wise inversion, or bit-wise NOT, element-wise.
LAX-backend implementation of
invert()
. Original docstring below.invert(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[, signature, extobj])
Computes the bit-wise NOT of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator
~
.For signed integer inputs, the two’s complement is returned. In a two’s-complement system negative numbers are represented by the two’s complement of the absolute value. This is the most common method of representing signed integers on computers 1. A N-bit two’s-complement system can represent every integer in the range \(-2^{N-1}\) to \(+2^{N-1}-1\).
- Parameters
x (array_like) – Only integer and boolean types are handled.
- Returns
out – Result. This is a scalar if x is a scalar.
- Return type
ndarray or scalar
See also
bitwise_and()
,bitwise_or()
,bitwise_xor()
,logical_not()
binary_repr()
Return the binary representation of the input number as a string.
Notes
bitwise_not is an alias for invert:
>>> np.bitwise_not is np.invert True
References
- 1
Wikipedia, “Two’s complement”, https://en.wikipedia.org/wiki/Two’s_complement
Examples
We’ve seen that 13 is represented by
00001101
. The invert or bit-wise NOT of 13 is then:>>> x = np.invert(np.array(13, dtype=np.uint8)) >>> x 242 >>> np.binary_repr(x, width=8) '11110010'
The result depends on the bit-width:
>>> x = np.invert(np.array(13, dtype=np.uint16)) >>> x 65522 >>> np.binary_repr(x, width=16) '1111111111110010'
When using signed integer types the result is the two’s complement of the result for the unsigned type:
>>> np.invert(np.array([13], dtype=np.int8)) array([-14], dtype=int8) >>> np.binary_repr(-14, width=8) '11110010'
Booleans are accepted as well:
>>> np.invert(np.array([True, False])) array([False, True])