Warning
This page was created from a pull request.
jax.numpy.arrayΒΆ
-
jax.numpy.
array
(object, dtype=None, copy=True, order='K', ndmin=0)[source]ΒΆ Create an array.
LAX-backend implementation of
array()
. Original docstring below.array(object, dtype=None, *, copy=True, order=βKβ, subok=False, ndmin=0)
- Returns
- outndarray
An array object satisfying the specified requirements.
empty_like : Return an empty array with shape and type of input. ones_like : Return an array of ones with shape and type of input. zeros_like : Return an array of zeros with shape and type of input. full_like : Return a new array with shape of input filled with value. empty : Return a new uninitialized array. ones : Return a new array setting values to one. zeros : Return a new array setting values to zero. full : Return a new array of given shape filled with value.
When order is βAβ and object is an array in neither βCβ nor βFβ order, and a copy is forced by a change in dtype, then the order of the result is not necessarily βCβ as expected. This is likely a bug.
>>> np.array([1, 2, 3]) array([1, 2, 3])
Upcasting:
>>> np.array([1, 2, 3.0]) array([ 1., 2., 3.])
More than one dimension:
>>> np.array([[1, 2], [3, 4]]) array([[1, 2], [3, 4]])
Minimum dimensions 2:
>>> np.array([1, 2, 3], ndmin=2) array([[1, 2, 3]])
Type provided:
>>> np.array([1, 2, 3], dtype=complex) array([ 1.+0.j, 2.+0.j, 3.+0.j])
Data-type consisting of more than one element:
>>> x = np.array([(1,2),(3,4)],dtype=[('a','<i4'),('b','<i4')]) >>> x['a'] array([1, 3])
Creating an array from sub-classes:
>>> np.array(np.mat('1 2; 3 4')) array([[1, 2], [3, 4]])
>>> np.array(np.mat('1 2; 3 4'), subok=True) matrix([[1, 2], [3, 4]])