Warning
This page was created from a pull request.
jax.numpy.exp¶
-
jax.numpy.exp(x)¶ Calculate the exponential of all elements in the input array.
LAX-backend implementation of
exp(). Original docstring below.exp(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[, signature, extobj])
- Parameters
x (array_like) – Input values.
- Returns
out – Output array, element-wise exponential of x. This is a scalar if x is a scalar.
- Return type
ndarray or scalar
See also
Notes
The irrational number
eis also known as Euler’s number. It is approximately 2.718281, and is the base of the natural logarithm,ln(this means that, if \(x = \ln y = \log_e y\), then \(e^x = y\). For real input,exp(x)is always positive.For complex arguments,
x = a + ib, we can write \(e^x = e^a e^{ib}\). The first term, \(e^a\), is already known (it is the real argument, described above). The second term, \(e^{ib}\), is \(\cos b + i \sin b\), a function with magnitude 1 and a periodic phase.References
- 1
Wikipedia, “Exponential function”, https://en.wikipedia.org/wiki/Exponential_function
- 2
M. Abramovitz and I. A. Stegun, “Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables,” Dover, 1964, p. 69, http://www.math.sfu.ca/~cbm/aands/page_69.htm
Examples
Plot the magnitude and phase of
exp(x)in the complex plane:>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-2*np.pi, 2*np.pi, 100) >>> xx = x + 1j * x[:, np.newaxis] # a + ib over complex plane >>> out = np.exp(xx)
>>> plt.subplot(121) >>> plt.imshow(np.abs(out), ... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi], cmap='gray') >>> plt.title('Magnitude of exp(x)')
>>> plt.subplot(122) >>> plt.imshow(np.angle(out), ... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi], cmap='hsv') >>> plt.title('Phase (angle) of exp(x)') >>> plt.show()