Warning

This page was created from a pull request.

jax.numpy.linalg.det¶

jax.numpy.linalg.det = <jax.custom_derivatives.custom_jvp object>[source]¶

Compute the determinant of an array.

LAX-backend implementation of det(). Original docstring below.

Parameters

a ((.., M, M) array_like) – Input array to compute determinants for.

Returns

det – Determinant of a.

Return type

(..) array_like

See also

slogdet

Another way to represent the determinant, more suitable for large matrices where underflow/overflow may occur.

scipy.linalg.det

Similar function in SciPy.

Notes

New in version 1.8.0.

Broadcasting rules apply, see the numpy.linalg documentation for details.

The determinant is computed via LU factorization using the LAPACK routine z/dgetrf.

Examples

The determinant of a 2-D array [[a, b], [c, d]] is ad - bc:

>>> a = np.array([[1, 2], [3, 4]])
>>> np.linalg.det(a)
-2.0 # may vary

Computing determinants for a stack of matrices:

>>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ])
>>> a.shape
(3, 2, 2)
>>> np.linalg.det(a)
array([-2., -3., -8.])