Warning
This page was created from a pull request.
jax.scipy.signal.correlateΒΆ
-
jax.scipy.signal.
correlate
(in1, in2, mode='full', method='auto', precision=None)[source]ΒΆ Cross-correlate two N-dimensional arrays.
LAX-backend implementation of
correlate()
. Original docstring below.Cross-correlate in1 and in2, with the output size determined by the mode argument.
- Parameters
in1 (array_like) β First input.
in2 (array_like) β Second input. Should have the same number of dimensions as in1.
mode (str {'full', 'valid', 'same'}, optional) β A string indicating the size of the output:
method (str {'auto', 'direct', 'fft'}, optional) β A string indicating which method to use to calculate the correlation.
- Returns
correlate β An N-dimensional array containing a subset of the discrete linear cross-correlation of in1 with in2.
- Return type
array
See also
choose_conv_method()
contains more documentation on method.
Notes
The correlation z of two d-dimensional arrays x and y is defined as:
z[...,k,...] = sum[..., i_l, ...] x[..., i_l,...] * conj(y[..., i_l - k,...])
This way, if x and y are 1-D arrays and
z = correlate(x, y, 'full')
then\[z[k] = (x * y)(k - N + 1) = \sum_{l=0}^{||x||-1}x_l y_{l-k+N-1}^{*}\]for \(k = 0, 1, ..., ||x|| + ||y|| - 2\)
where \(||x||\) is the length of
x
, \(N = \max(||x||,||y||)\), and \(y_m\) is 0 when m is outside the range of y.method='fft'
only works for numerical arrays as it relies on fftconvolve. In certain cases (i.e., arrays of objects or when rounding integers can lose precision),method='direct'
is always used.When using βsameβ mode with even-length inputs, the outputs of correlate and correlate2d differ: There is a 1-index offset between them.
Examples
Implement a matched filter using cross-correlation, to recover a signal that has passed through a noisy channel.
>>> from scipy import signal >>> sig = np.repeat([0., 1., 1., 0., 1., 0., 0., 1.], 128) >>> sig_noise = sig + np.random.randn(len(sig)) >>> corr = signal.correlate(sig_noise, np.ones(128), mode='same') / 128
>>> import matplotlib.pyplot as plt >>> clock = np.arange(64, len(sig), 128) >>> fig, (ax_orig, ax_noise, ax_corr) = plt.subplots(3, 1, sharex=True) >>> ax_orig.plot(sig) >>> ax_orig.plot(clock, sig[clock], 'ro') >>> ax_orig.set_title('Original signal') >>> ax_noise.plot(sig_noise) >>> ax_noise.set_title('Signal with noise') >>> ax_corr.plot(corr) >>> ax_corr.plot(clock, corr[clock], 'ro') >>> ax_corr.axhline(0.5, ls=':') >>> ax_corr.set_title('Cross-correlated with rectangular pulse') >>> ax_orig.margins(0, 0.1) >>> fig.tight_layout() >>> fig.show()