Warning
This page was created from a pull request.
jax.scipy.signal.convolve2dΒΆ
-
jax.scipy.signal.
convolve2d
(in1, in2, mode='full', boundary='fill', fillvalue=0, precision=None)[source]ΒΆ Convolve two 2-dimensional arrays.
LAX-backend implementation of
convolve2d()
. Original docstring below.Convolve in1 and in2 with output size determined by mode, and boundary conditions determined by boundary and fillvalue.
- Parameters
in1 (array_like) β First input.
in2 (array_like) β Second input. Should have the same number of dimensions as in1.
mode (str {'full', 'valid', 'same'}, optional) β A string indicating the size of the output:
boundary (str {'fill', 'wrap', 'symm'}, optional) β A flag indicating how to handle boundaries:
fillvalue (scalar, optional) β Value to fill pad input arrays with. Default is 0.
- Returns
out β A 2-dimensional array containing a subset of the discrete linear convolution of in1 with in2.
- Return type
Examples
Compute the gradient of an image by 2D convolution with a complex Scharr operator. (Horizontal operator is real, vertical is imaginary.) Use symmetric boundary condition to avoid creating edges at the image boundaries.
>>> from scipy import signal >>> from scipy import misc >>> ascent = misc.ascent() >>> scharr = np.array([[ -3-3j, 0-10j, +3 -3j], ... [-10+0j, 0+ 0j, +10 +0j], ... [ -3+3j, 0+10j, +3 +3j]]) # Gx + j*Gy >>> grad = signal.convolve2d(ascent, scharr, boundary='symm', mode='same')
>>> import matplotlib.pyplot as plt >>> fig, (ax_orig, ax_mag, ax_ang) = plt.subplots(3, 1, figsize=(6, 15)) >>> ax_orig.imshow(ascent, cmap='gray') >>> ax_orig.set_title('Original') >>> ax_orig.set_axis_off() >>> ax_mag.imshow(np.absolute(grad), cmap='gray') >>> ax_mag.set_title('Gradient magnitude') >>> ax_mag.set_axis_off() >>> ax_ang.imshow(np.angle(grad), cmap='hsv') # hsv is cyclic, like angles >>> ax_ang.set_title('Gradient orientation') >>> ax_ang.set_axis_off() >>> fig.show()