Warning
This page was created from a pull request.
jax.scipy.signal.correlate2dΒΆ
-
jax.scipy.signal.
correlate2d
(in1, in2, mode='full', boundary='fill', fillvalue=0, precision=None)[source]ΒΆ Cross-correlate two 2-dimensional arrays.
LAX-backend implementation of
correlate2d()
. Original docstring below.Cross correlate in1 and in2 with output size determined by mode, and boundary conditions determined by boundary and fillvalue.
- Parameters
in1 (array_like) β First input.
in2 (array_like) β Second input. Should have the same number of dimensions as in1.
mode (str {'full', 'valid', 'same'}, optional) β A string indicating the size of the output:
boundary (str {'fill', 'wrap', 'symm'}, optional) β A flag indicating how to handle boundaries:
fillvalue (scalar, optional) β Value to fill pad input arrays with. Default is 0.
- Returns
correlate2d β A 2-dimensional array containing a subset of the discrete linear cross-correlation of in1 with in2.
- Return type
Notes
When using βsameβ mode with even-length inputs, the outputs of correlate and correlate2d differ: There is a 1-index offset between them.
Examples
Use 2D cross-correlation to find the location of a template in a noisy image:
>>> from scipy import signal >>> from scipy import misc >>> face = misc.face(gray=True) - misc.face(gray=True).mean() >>> template = np.copy(face[300:365, 670:750]) # right eye >>> template -= template.mean() >>> face = face + np.random.randn(*face.shape) * 50 # add noise >>> corr = signal.correlate2d(face, template, boundary='symm', mode='same') >>> y, x = np.unravel_index(np.argmax(corr), corr.shape) # find the match
>>> import matplotlib.pyplot as plt >>> fig, (ax_orig, ax_template, ax_corr) = plt.subplots(3, 1, ... figsize=(6, 15)) >>> ax_orig.imshow(face, cmap='gray') >>> ax_orig.set_title('Original') >>> ax_orig.set_axis_off() >>> ax_template.imshow(template, cmap='gray') >>> ax_template.set_title('Template') >>> ax_template.set_axis_off() >>> ax_corr.imshow(corr, cmap='gray') >>> ax_corr.set_title('Cross-correlation') >>> ax_corr.set_axis_off() >>> ax_orig.plot(x, y, 'ro') >>> fig.show()