Warning
This page was created from a pull request.
jax.scipy.special.gammainc¶
-
jax.scipy.special.
gammainc
(a, x)[source]¶ Regularized lower incomplete gamma function.
LAX-backend implementation of
gammainc()
. Original docstring below.gammainc(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[, signature, extobj])
gammainc(a, x)
It is defined as
\[P(a, x) = \frac{1}{\Gamma(a)} \int_0^x t^{a - 1}e^{-t} dt\]for \(a > 0\) and \(x \geq 0\). See [dlmf] for details.
- Parameters
a (array_like) – Positive parameter
x (array_like) – Nonnegative argument
- Returns
Values of the lower incomplete gamma function
- Return type
scalar or ndarray
Notes
The function satisfies the relation
gammainc(a, x) + gammaincc(a, x) = 1
where gammaincc is the regularized upper incomplete gamma function.The implementation largely follows that of [boost].
See also
gammaincc()
regularized upper incomplete gamma function
gammaincinv()
inverse of the regularized lower incomplete gamma function with respect to x
gammainccinv()
inverse of the regularized upper incomplete gamma function with respect to x
References
- dlmf
NIST Digital Library of Mathematical functions https://dlmf.nist.gov/8.2#E4
- boost
Maddock et. al., “Incomplete Gamma Functions”, https://www.boost.org/doc/libs/1_61_0/libs/math/doc/html/math_toolkit/sf_gamma/igamma.html
Examples
>>> import scipy.special as sc
It is the CDF of the gamma distribution, so it starts at 0 and monotonically increases to 1.
>>> sc.gammainc(0.5, [0, 1, 10, 100]) array([0. , 0.84270079, 0.99999226, 1. ])
It is equal to one minus the upper incomplete gamma function.
>>> a, x = 0.5, 0.4 >>> sc.gammainc(a, x) 0.6289066304773024 >>> 1 - sc.gammaincc(a, x) 0.6289066304773024