Warning
This page was created from a pull request.
jax.scipy.special.expit¶
-
jax.scipy.special.
expit
= <jax.custom_derivatives.custom_jvp object>[source]¶ Expit (a.k.a. logistic sigmoid) ufunc for ndarrays.
LAX-backend implementation of
expit()
. Original docstring below.expit(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[, signature, extobj])
expit(x)
The expit function, also known as the logistic sigmoid function, is defined as
expit(x) = 1/(1+exp(-x))
. It is the inverse of the logit function.- Parameters
x (ndarray) – The ndarray to apply expit to element-wise.
- Returns
out – An ndarray of the same shape as x. Its entries are expit of the corresponding entry of x.
- Return type
See also
Notes
As a ufunc expit takes a number of optional keyword arguments. For more information see ufuncs
New in version 0.10.0.
Examples
>>> from scipy.special import expit, logit
>>> expit([-np.inf, -1.5, 0, 1.5, np.inf]) array([ 0. , 0.18242552, 0.5 , 0.81757448, 1. ])
logit is the inverse of expit:
>>> logit(expit([-2.5, 0, 3.1, 5.0])) array([-2.5, 0. , 3.1, 5. ])
Plot expit(x) for x in [-6, 6]:
>>> import matplotlib.pyplot as plt >>> x = np.linspace(-6, 6, 121) >>> y = expit(x) >>> plt.plot(x, y) >>> plt.grid() >>> plt.xlim(-6, 6) >>> plt.xlabel('x') >>> plt.title('expit(x)') >>> plt.show()