Warning
This page was created from a pull request.
jax.scipy.special.i0¶
-
jax.scipy.special.
i0
(x)[source]¶ Modified Bessel function of order 0.
LAX-backend implementation of
i0()
. Original docstring below.i0(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[, signature, extobj])
i0(x)
Defined as,
\[I_0(x) = \sum_{k=0}^\infty \frac{(x^2/4)^k}{(k!)^2} = J_0(\imath x),\]where \(J_0\) is the Bessel function of the first kind of order 0.
- Parameters
x (array_like) – Argument (float)
- Returns
I – Value of the modified Bessel function of order 0 at x.
- Return type
Notes
The range is partitioned into the two intervals [0, 8] and (8, infinity). Chebyshev polynomial expansions are employed in each interval.
This function is a wrapper for the Cephes 1 routine i0.
See also
iv()
,i0e()
References
- 1
Cephes Mathematical Functions Library, http://www.netlib.org/cephes/