Warning
This page was created from a pull request.
jax.scipy.linalg.lu_solveΒΆ
-
jax.scipy.linalg.
lu_solve
(lu_and_piv, b, trans=0, overwrite_b=False, check_finite=True)[source]ΒΆ Solve an equation system, a x = b, given the LU factorization of a
LAX-backend implementation of
lu_solve()
. Original docstring below.- Parameters
b (array) β Right-hand side
trans ({0, 1, 2}, optional) β Type of system to solve:
overwrite_b (bool, optional) β Whether to overwrite data in b (may increase performance)
check_finite (bool, optional) β Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
- Returns
x β Solution to the system
- Return type
array
See also
lu_factor()
LU factorize a matrix
Examples
>>> from scipy.linalg import lu_factor, lu_solve >>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]]) >>> b = np.array([1, 1, 1, 1]) >>> lu, piv = lu_factor(A) >>> x = lu_solve((lu, piv), b) >>> np.allclose(A @ x - b, np.zeros((4,))) True