Warning
This page was created from a pull request.
jax.scipy.linalg.choleskyΒΆ
-
jax.scipy.linalg.
cholesky
(a, lower=False, overwrite_a=False, check_finite=True)[source]ΒΆ Compute the Cholesky decomposition of a matrix.
LAX-backend implementation of
cholesky()
. Original docstring below.Returns the Cholesky decomposition, \(A = L L^*\) or \(A = U^* U\) of a Hermitian positive-definite matrix A.
- Parameters
a ((M, M) array_like) β Matrix to be decomposed
lower (bool, optional) β Whether to compute the upper- or lower-triangular Cholesky factorization. Default is upper-triangular.
overwrite_a (bool, optional) β Whether to overwrite data in a (may improve performance).
check_finite (bool, optional) β Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
- Returns
c β Upper- or lower-triangular Cholesky factor of a.
- Return type
(M, M) ndarray
:raises LinAlgError : if decomposition fails.:
Examples
>>> from scipy.linalg import cholesky >>> a = np.array([[1,-2j],[2j,5]]) >>> L = cholesky(a, lower=True) >>> L array([[ 1.+0.j, 0.+0.j], [ 0.+2.j, 1.+0.j]]) >>> L @ L.T.conj() array([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]])