Warning
This page was created from a pull request.
jax.lax.linalg.eighΒΆ
-
jax.lax.linalg.eigh(x, lower=True, symmetrize_input=True)[source]ΒΆ Eigendecomposition of a Hermitian matrix.
Computes the eigenvalues and eigenvectors of a complex Hermitian or real symmetric square matrix.
- Parameters
x β A batch of square complex Hermitian or real symmetric matrices with shape
[..., n, n].lower (
bool) β Ifsymmetrize_inputisFalse, describes which triangle of the input matrix to use. Ifsymmetrize_inputisFalse, only the triangle given byloweris accessed; the other triangle is ignored and not accessed.symmetrize_input (
bool) β IfTrue, the matrix is symmetrized before the eigendecomposition by computing \(\frac{1}{2}(x + x^H)\).
- Returns
A tuple
(v, w).vis an array with the same dtype asx(or its real counterpart if complex) with shape[..., n]containing the eigenvalues ofx.wis an array with the same dtype asxsuch thatw[..., :, i]is the eigenvector corresponding tov[..., i].